RNA-seq Quality Control in BIOS freeze 2

OPENING UP THE BBMRI GENOMICS INFRASTRUCTURE IN THE NETHERLANDS AMSTERDAM, 21ST OF SEPTEMBER, 2016

ANNIQUE CLARINGBOULD

RNA-seq data in BIOS Freeze 1

- Freeze 1: 2,116 unrelated samples
- Several current papers use freeze 1 data

Disease variants alter transcription factor levels and methylation of their binding sites

Marc Jan Bonder^{1,*}, René Luijk^{2,*}, Daria V. Zhernakova^{1,**}, Matthijs Moed^{2,**}, Patrick Deelen^{1,3,**}, Martijn Vermaat^{4,**}, Maarten van Iterson², Freerk van Dijk^{1,3}, Michiel van Galen³, Jan Bot⁵, Roderick C. Slieker², P. Mila Jhamai⁶, Michael Verbiest³, H. Eka D. Suchiman², Marijn Verkerk⁶, Ruud van der Breggen², Jeroen van Rooij⁶, Nico Lakenberg², Wibowo Arindrarto⁸, Szymon M. Kielbasa⁷, Iris Jonkers², Peter van 't Hof⁷, Irene Nooren⁵, Marian Beekman², Joris Deelen², Diana van Heemst⁹, Alexandra Zhernakova¹, Ettje F. Tigchelaar¹, Morris A. Swertz^{1,3}, Albert Hofman¹⁰, André G. Uitterlinden⁶, René Pool¹¹, Jenny van Dongen¹¹, Jouke J. Hottenga¹¹, Coen D.A. Stehouwer¹², Carla J.H. van der Kallen¹², Casper G. Schalkwijk¹², Leonard H. van der Berg¹³, Erik. W van Zwet⁸, Hailiang Mei⁷, Yang Li¹, Mathieu Lemire¹⁴, Thomas J. Hudson^{14,15,16}, the BIOS Consortium, P. Eline Slagboom², Cisca Wijmenga¹, Jan H. Veldink¹³, Marleen M.J. van Greevenbroek¹², Cornelia M. van Duijn¹⁷, Dorret I. Boomsma¹¹, Aaron Isaacs^{17,##}, Rick Jansen^{18,##}, Joyce B.J. van Meurs^{6,##}, Peter A.C. 't Hoen^{4,#}, Lude Franke^{1,#}, Bastiaan T. Heijmana^{2,#}

Hypothesis-free identification of modulators of genetic risk factors

Daria V. Zhernakova¹*, Patrick Deelen¹.²*, Martijn Vermaat³*, Maarten van Iterson⁴*, Michiel van Galen³, Wibowo Arindrarto⁵, Peter van 't Hof⁵, Hailiang Mei⁵, Freerk van Dijk¹.², Harm-Jan Westra⁶.7.Გ, Marc Jan Bonder¹, Jeroen van Rooij⁶, Marijn Verkerk⁶, P. Mila Jhamai⁶, Matthijs Moed⁴, Szymon M. Kielbasa⁴, Jan Bot¹o, Irene Nooren¹o, René Pool¹¹, Jenny van Dongen¹¹, Jouke J. Hottenga¹¹, Coen D.A. Stehouwer¹², Carla J.H. van der Kallen¹², Casper G. Schalkwijk¹², Alexandra Zhernakova¹, Yang Li¹, Ettje F. Tigchelaar¹, Marian Beekman⁴, Joris Deelen⁴, Diana van Heemst¹³, Leonard H. van den Berg¹⁴, Albert Hofman¹⁵, André G. Uitterlinden⁶, Marleen M.J. van Greevenbroek¹², Jan H. Veldink¹⁶, Dorret I. Boomsma¹¹, Cornelia M. van Duijn¹², Cisca Wijmenga¹, P. Eline Slagboom⁴, Morris A. Swertz¹.², Aaron Isaacs¹७,¹³, Joyce B.J. van Meurs⁶, Rick Jansen¹⁶, Bastiaan T. Heijmans⁴ħ, Peter A.C. 't Hoen³ħ, Lude Franke¹ħ

Refined mapping of autoimmune disease associated genetic variants with gene expression suggests an important role for non-coding RNAs

Isis Ricaño-Ponce^a, Daria V. Zhernakova^a, Patrick Deelen^{a, b}, Oscar Luo^c, Xingwang Li^c, Aaron Isaacs^d, Juha Karjalainen^a, Jennifer Di Tommaso^a, Zuzanna Agnieszka Borek^a, Maria M. Zorro^a, Javier Gutierrez-Achury^a, Andre G. Uitterlinden^d, Albert Hofman^d, Joyce van Meurs^d,

BIOS consortium^a.

RNA-seq data in BIOS Freeze 2

Freeze 2 initial numbers	Number of samples
BIOS + NTR extra	4543
BIOS only	3824

- Samples available from CODAM, LLDeep, LLS, NTR, PAN, RS
- ❖ Paired-end sequencing Illumina's Hiseq2000
- ♦ Intended number of reads: >15M
 - Re-sequenced several samples
- Many factors can influence the quality of the data
- Goal: usable set of unrelated samples with gene expression (and genotype) data of good quality

Main strategy

- 1. Match RNA to DNA for each individual based on data
 - Resolve mix ups
 - Merge topped up samples
- 2. Use quality metrics as cut-offs
- 3. Sample selection

DNA-RNA matching Method

- Extract genotypes from RNA-seq data
 - Alignment
 - Quantification
 - Genotype calling (Unified Genotyper)
- DNA-RNA matching
 - Check that correct samples are matched
- **Remove** outliers
 - Ethnic
 - Heterozygosity

DNA-RNA matching Method

Calculate correlation between genotypes

DNA-RNA matching Resolving twin pairs and mix ups

- 96-well plate turned around
- Sample mix ups
- Identifying monozygotic & dizygotic twins
- **Remove** unresolved 39 mix ups

DNA-RNA matching Merging RNA-seq runs

- Some low-read samples were re-sequenced
- Merge two RNA samples from one individual

QC metrics Pipeline output

Output from QC pipeline includes many variables

All of these were plotted to check which thresholds are informative

exon mapped / genome total =
percentage of total reads mapping to exons

avg_deletion_length	avg_mapped_length	
start_mapping_time	avg_input_length	
pct_unique_mapped	end_time	
num_unique_mapped	pct_unmapped_mismatch	
num_splice_annotated	genome_duplicates	
num_splice_noncanonical	_exon_duplicates_	
pct_unmapped_other	exon_mapped	
num_splice_total	genome_total	
num_splice_atac	genome_mapped	
num_splice_gcag	exon_total	
num_input	genome_insert_std	
rate_insertion_per_base	genome_insert_mean	
pct_mapped_multiple	R2_raw_GC_mean	
rate_mismatch_per_base	R2_raw_GC_std	
start_job_time	R1_raw_GC_mean	
pct_unmapped_short	R1_raw_GC_std	
mapping_speed	R1_clean_GC_mean	
avg_insertion_length	R2_clean_GC_mean	
pct_mapped_many	R2_clean_GC_std	
rate_deletion_per_base	R1_clean_GC_std	
num_splice_gtag	MEDIAN_5PRIME_TO_3PRIME_BIAS	
num_mapped_many	MEDIAN_3PRIME_BIAS	
num_mapped_multiple	MEDIAN_5PRIME_BIAS	

QC metrics Reads mapping to exons

Sample selection Family members

- * Remove samples with first degree relationship
- * Twins: take the RNAseq sample with higher % mapping to exons
- GoNL: include parents (more samples)

QC metrics Mixupmapper

- Matching RNA to DNA again with a different method (MixupMapper)
- * Keep samples with no match MixupMapper, but good match in earlier DNA-RNA mapping
- * Remove samples with no match between RNA and DNA in both analyses
 - These samples cannot be recognized as a match
 - No match is an indication of RNA-seq quality: used as a QC metric

QC metrics Total number of reads

Freeze 2 RNA-seq dataset

Step	Removed	Samples left
RNA sequencing		4543
Outliers	- 96	4447
Unsolved mix ups	- 39	4408
<70% mapped to exon	- 23	4385
No genotypes available	- 109	4276
No DNA – RNA match	- 109	4167
Related samples	- 684	3483
<15M reads	- 4	3479

Cohort	Freeze 2 DNA + RNA unrelated samples	Freeze 2 RNA only unrelated samples
CODAM	186	186
PAN	175	175
RS	777	777
LLS	697	697
LLDeep	825	825
NTR	819	928
Total	3479	3588

Concluding remarks

- Freeze 2 RNA-seq data is ready for use
- Keep in mind
 - Fairly lenient QC parameters
 - ❖ Cohort effects → adjust with covariate
 - Unrelated samples

Quality control is a necessary foundation for good research

Acknowledgments

Team effort by among others

Maarten van Iterson Peter-Bram 't Hoen

Rick Jansen Joyce van Meurs

Joost Verlouw Bas Heijmans

Niek de Klein Morris Swertz

Freerk van Dijk Lude Franke

Leon Mei